Matematika

Pertanyaan

bantu donk kak matematika peminatan
bantu donk kak matematika peminatan

1 Jawaban

  •  [tex]\lim_{n\to\ 0}\frac{\tan{2x}}{\sqrt{1+\cos{8x}}-\sqrt{2-\sin{8x}}}*\frac{\sqrt{1+\cos{8x}}+\sqrt{2-\sin{8x}}} {\sqrt{1+\cos{8x}}+\sqrt{2-\sin{8x}}}[/tex]
    [tex]=\lim_{n\to\ 0}\frac{\tan{2x}*(\sqrt{1+\cos{8x}}+\sqrt{2-\sin{8x}})} {(1+\cos{8x})-(2-\sin{8x})}[/tex]
    [tex]=\lim_{n\to\ 0}\frac{\tan{2x}}{\cos{8x}+\sin{8x}-1}*\lim_{n\to\ 0}(\sqrt{1+\cos{8x}}+\sqrt{2-\sin{8x}})[/tex]
    [tex]=\lim_{n\to\ 0}\frac{2(\sec{2x})^{2}}{-8\sin{8x}+8\cos{8x}}*2\sqrt{2}[/tex]
    [tex]=\frac{2}{8}*2\sqrt{2}[/tex]
    [tex]=\frac{\sqrt{2}}{2}[/tex]

    [tex]\lim_{n\to\ 0}\frac{x}{\sqrt{\sin{x}+2}-\sqrt{\cos{x}+1}}*\frac{\sqrt{\sin{x}+2}+\sqrt{\cos{x}+1}}{\sqrt{\sin{x}+2}+\sqrt{\cos{x}+1}}[/tex]
    [tex]=\lim_{n\to\ 0}\frac{x}{(\sin{x}+2)-(\cos{x}+1)}*\lim_{n\to\ 0}(\sqrt{\sin{x}+2}+\sqrt{\cos{x}+1})[/tex]
    [tex]=\lim_{n\to\ 0}\frac{x}{(\sin{x}+2)-(\cos{x}+1)}*2\sqrt{2}[/tex]
    [tex]=\lim_{n\to\ 0}\frac{x}{\sin{x}-\cos{x}+1}*2\sqrt{2}[/tex]
    [tex]=\lim_{n\to\ 0}\frac{1}{\cos{x}+\sin{x}}*2\sqrt{2}[/tex]
    [tex]=\frac{1}{1}*2\sqrt{2}[/tex]
    [tex]=2\sqrt{2}[/tex]